Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(8): 5699-5707, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29410993

RESUMO

The effects of the staggered double vacancies, hydrogen (H), 3d transition metals, for example cobalt, and semiconductor covalent atoms, for example, germanium, nitrogen, phosphorus (P) and silicon adsorption on the transport properties of monolayer phosphorene were studied using density functional theory and non-equilibrium Green's function formalism. It was observed that the performance of the phosphorene tunnel field effect transistors (TFETs) with an 8.8 nm scaling channel length could be improved most effectively, if the adatoms or vacancies were introduced at the source channel interface. For H and P doped devices, the upper limit of on-state currents of phosphorene TFETs were able to be quickly increased to 2465 µA µm-1 and 1652 µA µm-1, respectively, which not only outperformed the pristine sample, but also met the requirements for high performance logic applications for the next decade in the International Technology Roadmap for Semiconductors (ITRS). It was proved that the defect-induced band gap states make the effective tunneling path between the conduction band (CB) and valence band (VB) much shorter, so that the carriers can be injected easily from the left electrode, then transfer to the channel. In this regard, the tunneling properties of phosphorene TFETs can be manipulated using surface defects. In addition, the effects of spin polarization on the transport properties of doped phosphorene TFETs were also rigorously considered, H and P doped TFETs could achieve a high ON current of 1795 µA µm-1 and 1368 µA µm-1, respectively, which is closer to realistic nanodevices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...